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Model Studies of Current Collection by a Flush-Mounted Disk Probe

1. INTRODUCTION

In the introductory section of a review article on electrostatic probes, Chen! makes the following
comment:

“Experimentally, electrostatic probes are extremely simple devices, consisting merely of an

insulated wire, using a D. C. power supply, and an ammeter or an oscilloscope. Nature,

however, makes us pay a penalty for this simplicity: the theory of probes is extremely complicated.”
The article which is introduced by this remark deals exclusively with probes described by a single
spatial dimension; that is, probes assumed to be infinitely long cylinders, or those having spherical
symmetry. Insofar as space vehicle probes are concerned, Chen’s remark is even more true of flush
mounted probes than of those he describes. Flush mounted probes are far simpler to construct,
need not be deployed, and are more reliable and less costly than the necessarily boom mounted
cylindrical or spherical probes. Their theory is also far more complicated, having at most
cylindrical symmetry, and thus requiring at the least, two spatial dimensions for their proper
description. As a result, we find that flush mounted probes continue to be flown on rockets and
satellites, but that calculations are almost all numerical, limited in parameter range, and that
interpretation of measurements still presents a serious problem.

Two studies of current collection for the front face of a right circular cylinder were carried out
for AFGL in the 1970s, one by Parker? and one by Sugimura.3 The former included the effects of
vehicle velocity, disk potential, and space charge, while the latter dealt with all of these and also
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with the effects of collisions. In spite of the differences in methods of calculation, comparisons
between the two studies can be made, and these reveal certain inconsistencies. There are also
apparent disagreements between both of these studies and experimental flight data which are not
understood. To aid in clearing up these problems, further studies and comparisons are thus
indicated and it is for this purpose that the current effort was undertaken.

The present study is extremely simple, does not deal with either space charge or collisions,
and in fact also neglects the angular aspects of the velocities associated with the thermal v
distribution of collected particles. It is reasonable to ask, given the far more realistic calculations
already completed, whether such a model can be of any value at all. The answer to this question
is in the affirmative. Simple models, whether in agreement with observations or the contrary, are
always informative. In the usual course of events, simple models precede more complicated,
complete ones, and questions of the utility of reversion from more complex to simpler do not
arise. In the present instance, this does not seem to be the case, the more complete and
complicated models having been explored before simpler ones. We therefore expect this study to
be informative; and, these expectations will be seen to be justified.

The current collector for the model investigated here is a conducting, plane, circular disk
at some specified potential, imbedded in and coplanar with an infinite conducting plane held
at zero potential. Charged particles are released with a specified initial velocity toward and
normal to the conducting plane, and at a distance great enough to simulate a release at
infinity. The particles are assumed to move in the primary field of the conducting plane; that
is, space charge effects are ignored. All particles have identical initial velocities so that there
is no thermal distribution of initial energies. There is, however, an initial characteristic energy
available for use in non-dimensionalizing the disk potential.

2. THE ELECTRIC FIELD

The potential for a conducting, conformal circular disk with unit potential on the inner (unit
radius) disk, and zero potential on the surrounding conducting plane is given by

Vip,z) = I:J olpx)J;(x)eZdx, (0<z< ) (1)

Here J, and J, are Bessel functions of order zero and one réspectively, and p,z, the usual
cylindrical coordinates. From this we have for the corresponding electric fields,

E,=- J.ole(px)Jl(x)e’”‘ dx (0<z) 2)
E,=- _[:xJo(px) Jxe™dx (0<z) | 3) )
The approximate numerical evaluation of these integrals is time consuming, and to calculate a .

single trajectory for charged particles moving in this field may require thousands of field




evaluations. To mitigate this we proceed as follows. We break the half space z > O into two regions,
an interior region, for which p,z < 1.5 and an exterior region for which either or both p,z > 1.5. In
the interior region we evaluate the two field integrals at 30 x 30 = 900 discrete grid points, once
and for all. As a particle trajectory enters this interior region, and field values are required at
specific locations, these are supplied by a (linear) interpolation between the four bounding grid
values. Higher accuracy could be obtained by using higher order interpolation but this was not, for
present purposes, felt to be necessary. Although the potential is defined by the integral expression
for z = 0O, the fields are not: the integrals do not converge. We know from the boundary conditions
however that E (p,0) = 0. For E,(p,0), we can calculate V(p,e), we know that V(p,0) = 1, and from
these values, an approximate value of E, at z = 0 can be obtained, as a numerical derivative.
Alternatively, E_(p,0) may be extrapolated from the two contiguous values closest to z = O.

For the exterior region, we make use of the following (unproved) theorem given by Smythe:
If V is symmetrical about the z axis and its value is known at all points on this axis and if this value
can be expressed by a finite or convergent power series involving only integral powers of z, then the
potential at any point can be obtained by multiplying the nth term of the power series by P_(cos6)
and writing r for z. The result holds for the same range of values of r, as the range of z in the
original expression. P_(cos6) is the Legendre Polynomial of order n.

Now, along the axis, the integral in Eq {1) reduces to

V=1- z/\/z +1—2( 1)"'1-13—5m——l (4)

the last valid for z>1. Using the above theorem, we have for the potential in spherical coordinates

& .a135.-2n-1
V(8= Y (-1 l—z-n—ljpf—Pzn_,(cose) (5)

n=1

and, taking derivatives and using recursion relations for the Legendre polynomials,

oo

v 4, 1.3.5....2n-1

E, === é(._l)ﬂ T P, ,(cos6) (6)
1oV < 413 5 -1 1

E, =-- = n§=l( ™! o 2n+1 Sine[P2n_2[cose)— cosOP,,_(cosH)] (7)

Since trajectory calculations are best carried out in cylindrical coordinates, these values for E , E,
are then converted to corresponding values for E, E,.

The left hand side of Eq. (4) can also be expanded as a series in integral, positive powers of z,
valid for z < 1. However, use of series for both z > 1 and z < 1 leaves values for z = 1 undetermined,
a problem which is avoided by using integral evaluations for all p,z < 1.5.

The use of two widely differing methods of calculating the fields offers the opportunity to check
on the accuracy of the numerical work by a comparison at the boundaries; and such a check shows
the values to agree within better than 0.1 percent over the complete ranges of both boundaries.
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The behavior of V; E at (1,0) remains to be discussed. We posit the nature of this behavior to be '
similar to that at the edge of an infinite strip at unit potential embedded in an infinite conducting
plane at zero potential. The potential for this problem is readily found by use of complex variables,
and for a strip of width 2 is found to be

_ -1 2y |
V= %ttan (?TZ—_J | (8) .

where y is in the direction normal to, and x in the plane of, the strip. For the fields,

4xy
E, =
* %{(x2 +y2-172 +4y2) 9)
—2(x%-y2-1)
E, =
y %‘(x2+y2—1)2+4y2 (10)

both of which are non-uniformly convergent at (+1,0).

From Egq. (10) the curve for which E; = 0 is seen to be x®> — y? = 1. The equivalent curve for the
conformal disk, E, = 0, is shown as the solid in Figure 1. For larger values of p,z the curve is
given by p= J2z which is the asymptotic value for a dipole field.

3. EQUATIONS AND RESULTS

The trajectory equations in cylindrical coordinates, in dimensional form are

d2p1

m S5 = ek (11a)
2,7
m%:eE; (11b)

with initial conditions

’ r 7 o~ . o . .
t=0:2'=z  : p'=p; : v, =0 : vz =V}

From the last of these we have available an initial energy }ész'f to utilize in non-
dimensionalizing potentials and fields. We also set the unit of distance equal to the disk radius a, to

obtain

2

[«
©

E, ' (12a) )
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Figure 1. Curve of E, = O for Disk-Plane Configuration

dzz_q)
F‘éEz | (12b)

1=0:2z=2; : p=p; : V=0 : Vv, =1 asthe non-dimensionalized equations to be solved

? 4 ’ e
numerically. Here T=tv;/a, py=pj/a, z;=z{/a; ¢= —_——}/mv’z
2 2

potential, E, E, are the non-dimensionalized fields for unit potential on the disk, and V' is the disk

is the non-dimensionalized disk

potential.




For an isolated charged disk, the field at infinity is that of a point charge, and it is possible to
advance the particle from infinity to some fixed chosen location analytically before turning further
advance over to a numerical procedure. For the conformal disk, the field at infinity is a dipole field,
and there is no simple analytic solution for the trajectory. Hence the initial value of the z coordinate
must be extended to rather large dimensionless values, somewhere between 50 and 200, the exact
value depending on the applied potential. This is requifed to simulate charged particles incident
from z = oo,

Now, the object of this whole exercise is to find, for a given value of ¢, that starting value {p;y ©°)
which terminates at (p; = 1, 0). In other words, we want to use a shoot and hunt method to try and
hit a singular point of the force field, an endeavor for which the prospects of success are not very
auspicious. But consider the following. Suppose that it turns out to be impossible to hit not only
close to, but anywhere near the singularity. Suppose further, that for some value of initial p = Py
p;<< 1, but that for p =p, + &, p;>> 1. If € can be made as small as desired, failure to converge on
p;= 1 is of no consequence. The collected current is given by a cross section, np? and if p, can be
determined to within any desired accuracy, then so is the probe characteristic. As will be seen, this,
in fact, will turn out to be the case.

The algorithm used to calculate trajectories was a fourth order Runge-Kutta routine. This allows
ease of changing increment sizes, so that relatively larger increments can be used at the beginning
of a trajectory, where both changes in field values and velocities are small, and smaller increments
near the termination of trajectories where the opposite is true.

Figure 2 shows six complete trajectories, all for ¢ = 200, corresponding to six starting values
for p = p,. These trajectories are all in a constant 6 plane, and negative values of p are those for
which p is on the side of the axis opposite from its starting location. It is seen that for the five
smaller values of p, the final value of p = p; < 1; that is, these particles are collected by the probe.
For the value p, = 10.5 on the other hand, p; = 1 so that this particle is not collected. As
remarked, we wish to discriminate between particles which are just collected, and those which
are just not. Figure 3, again for ¢ = 200 illustrates this fine discrimination. The long dashed and
solid trajectories, for p, = 9.90 and 9.98 respectively, terminate at p, = 0.56 and p,= 0.92 and are
hence collected, while the short dashed trajectory, with p, = 10.02 terminates at ps=4.0 and is
hence not collected. The jump in p; is substantial; but that in p, is small. If we choose the
collection cross section radius to be 10.00, then this is given to within two parts in 10%, a very
good accuracy. Trajectories for other values of potentials are not shown, but they display the
same fine discrimination in starting radii. It is notable that trajectories for values of p, differing
substantially from the transition value are relatively simple in form, while those close to the
transition value are relatively complicated, showing reversals in sign for v, and multiple
transitions across the axis.

In Figure 4 are plotted values of p; vs p, for four values of potential. These clearly display the
sharp transition from collected to uncollected particles. For the curves shown it can be seen that
although closely approached, no particles terminate on the z = 0 plane for values of p, < —1. This is
also true for ¢ = 300 and 400 (not shown) and suggests the possibility that this is a general
property of the trajectory system. Such a rule, if in fact true, cannot of course, be proved by
numerical solutions.
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Figure 2. Typical Trajectories for ¢ = 200. z, = 100

Finally, in Figure 5, we show the disk probe characteristic, the non-dimensionalized collected
current, I, vs ¢. Here, I= 512 (¢p) where the bar indicates that value of p, that separates p,;< 1 from
p;> 1. It is seen that the characteristic seems to be remarkably close to linear. This is discussed
further in the following section.

4. DISCUSSION
4.1. Laplace Field

The calculated characteristic, closely approximated by I = o + B¢ with o= 1.0 and B = 0.4875
is based on an initial flux that is both monoenergetic and monodirectional. The first of these
restrictions can be easily removed and doing this allows a re-nondimensionalization in terms of a
temperature and thence, a meaningful comparison with other calculations of probe

characteristics.



100

lllllllll]llllIIIII[II[IIIIII|TH“H”|IIIIIIII

IR LA RS R AR E

10:

b1l

14 1 1ant
=

1
—

0.l

ot gl

!
!
1
[
'
]
‘
1
)
1]
[}
]
]
'
]
]

0.0I AR AR LR RRRER A lllIlllll[lrllllllllrllll‘IIII]IIIIIIlll]llTllll”'lllllllll

-4 -2 0 2 4 6 8 10 I
P

Flgure 3. Trajectories Near Transition Values for ¢ = 200. Long Dash,
p; = 9.9; Solid, p, = 9.98; Short dash, p, = 10.02. z, = 100.

The previous computation shows that for any fixed initial velocity, the characteristic is close to
linear. If a characteristic is then formed by summing more than one initial velocity, it too will be
nearly linear, and so, in fact will any characteristic formed from any distribution of initial velocities.
If now, we consider a thermal distribution of such initial velocities, and replace the velocity square
appearing in the denominator of ¢ with a mean square thermal velocity, we have

I=a+B—L=a+ge—Y=a+gzp’sa+B'¢’ (13)

}ém<v2> 3 kT 3 .

Parker, (5), for a capped cylinder geometry with a Laplace field and no bulk flow also obtains
(his Table 2) a nearly linear characteristic with = 0.75. Considering{“the difference in geometry as
well as the radical differences in approach (he traces trajectories backwards in time, includes
angles in distribution functions, computes the current densities only at the center of the disk, and
uses a localized and relatively crude calculation grid) this agreement is impressive and reassuring
as far as model predictions are concerned. Sugimura (3) with a capped geometry similar to
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Figure 4. Four Curves Showing Final Radii p vs Initial Radii p,. z, = 100

Parker’s, Laplace field, and zero bulk flow also calculates a voltage-current characteristic. (This
value cannot be obtained directly but must be extracted from two separate figures in his report.)
When this is done, even though his method of calculation differs radically from Parker’s, a value
close to unity for B’ is again obtained.

4.2, Space Charge
The effect of space charge is in general to compress the electric field and thus reduce collected
currents. Both Parker and Sugimura find that with this reduction, the approximate linearity of the

current-voltage characteristics is maintained. The dimensionless parameter which characterizes

9
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Figure 5. Collecting Characteristic for Disk-Plane Configuration. z, = 150 for ¢ = 300, 400.
I is the Current Normalized to I, = tnev,, that collected for ¢ = O.

space charge effects is A, /D, the ratio of Debye length to collector disk diameter. Sugimura, whose
studies include a broader range of parameter values finds that for A, /D greater than 0.3, there is
essentially no space charge effect, while for A, /D of the order of 0.1, the reductions in current
values are (depending somewhat on vehicle velocity) a factor of roughly between 2 and 3. Debye
lengths in the ionosphere range from ~0.3 cm (high ion density near F, peak) to greater than 1.0 cm
in the lower E region. For a typical disk probe of ~1” diameter then, we expect A,,/D to range from
a low of ~0.1 to a high of ~0.4. The corresponding reductions in slopes of characteristic curves
would be a maximum of 3, and for the higher values of A, /D no reduction at all.

4.3. Comparison With Experimental Results

The disk probe data which are compared with the model are not from probes located along the sides of
ionospheric measuring rockets, but are, rather, from the entrance aperture to a mass spectrometer. For the
early ascent phase of the rocket trajectory the aperture plane is oriented close to normal to the ambient flow.

Aside from some indirect evidence involving highly speculative inferences, the comparison of
model with measured characteristics requires the voltage on the collecting element to be swept.
Unfortunately, for the location and geometry dealt with here, the data are scarce; as far as the R
author is aware, only one rocket flight yielding such data is available. These data have been
discussed in a previous report by the author (6). The analysis in that report revealed a major
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discrepancy between theory and data, and that analysis is still deemed valid. Whereas the model
predicted ratios of currents at a collecting voltage of 10 volts to currents with no collecting voltage
to be approximately 100, the data showed the measured ratio to be only approximately 4. The
indirect evidence referred to above also indicates experimental values of current ratios far lower
than the model ratios. The principal point being made here is that for a rather wide spectrum of
models, embracing both different geometries as well as different methods of calculation, the model
based characteristics are quite similar; and the differences between model predictions and
measured current ratios are large. This point is strengthened considerably by the inclusion of the
present simple model.

It would be convenient, as suggested by several workers in this field, to use conformal disk
probes to measure RELATIVE values of charged particle densities in the ionosphere. Considering
the large and currently unexplained differences between modeled and observed characteristics this
would seem to be a questionable procedure. The agreement among the various model calculations
lends confidence that the implications of the models have been correctly derived; the large
differences between model predictions and measured results however, seem to indicate a major
deficiency in the models themselves. Until this matter is resolved, caution is advisable in utilizing
conformal probes to measure ambient charged particle densities.

4.4. Additional Comments

As previously noted, other workers have also found that a nearly linear characteristic is a
common property of circular disk probes. The present calculations carry this result to an extreme
and raise the question as to whether any computed deviations from linearity are the results of
numerical errors, and that in fact, some property of the model leads to rigorously linear
characteristics. This is an open question.

The great detail and extensive grid system used in the present work reveal a feature not seen in
previous calculations of this type, namely the complexity of orbits for those particles released at
radii near the transition values. The occurrence of such orbits raises an interesting question
concerning their possible effect in calculations that include space charge. Continuity considerations
require that the sharp spikes, having near zero velocities (Figure 3) be accompanied by high local
charge densities. There is, as noted, a very limited range of initial values that contribute to such
spikes. How this combination of few particles, but having relatively large space charge densities
would affect overall space charge distributions and fields in a converged, iterated calculation is an
interesting question.
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